Ensemble Feature Selection for Multi-Stream Automatic Speech Recognition
نویسنده
چکیده
Ensemble Feature Selection for Multi-Stream Automatic Speech Recognition
منابع مشابه
A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملHill-climbing feature selection for multi-stream ASR
We performed automated feature selection for multi-stream (i.e., ensemble) automatic speech recognition, using a hillclimbing (HC) algorithm that changes one feature at a time if the change improves a performance score. For both clean and noisy data sets (using the OGI Numbers corpus), HC usually improved performance on held out data compared to the initial system it started with, even for nois...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملComparative Experiments to Evaluate Acoustic Distinctive Features and Forma Recognition Using a Multi-s
This paper presents an evaluation of the use of some auditory-based acoustic distinctive features and formant cues for automatic speech recognition (ASR). Comparative experiments have indicated that the use of either the formant magnitudes or the formant frequencies combined with some auditory-based acoustic distinctive features and the classical MFCCs within a multi-stream statistical framewor...
متن کاملDBN based multi-stream models for speech
We propose dynamic Bayesian network (DBN) based synchronous and asynchronous multi-stream models for noise-robust automatic speech recognition. In these models, multiple noise-robust features are combined into a single DBN to obtain better performance than any single feature system alone. Results on the Aurora 2.0 noisy speech task show significant improvements of our synchronous model over bot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008